

BCH-003-1015007

Seat No.

B. Sc. (Sem. V) (W.E.F. 2016) Examination

August - 2021

C-503 - Chemistry

(Physical Chemistry & Analytical Chemistry)

(New Course)						
		Faculty Code: 003 Subject Code: 1015007				
Tim	$2\frac{1}{2}$ Hours] [Total Marks:	70				
Ins	truct	tions: (1) There are ten questions. (2) Answer any five questions. (3) All questions carry equal marks (14 marks). (4) Figures to the right indicate full marks.	s)			
1	(a)	 Answer the following questions. (1) Define: Entropy. (2) Define: Cyclic process. (3) Give the equation for entropy change at solid substance converted into liquid. (4) What is the value of entropy change in reversible process? 	4			
	(b)	One heat engine is working at that time temperature of source is 120°C and sink is 15°C then calculate the work efficiency of heat engine.	2			
	(c)	Give the limitations of 1st law of thermodynamics.	3			
	(d)	Derive $\eta = \frac{W_{\text{max}}}{Q_2} = \frac{Q_2 - Q_1}{Q_2} = \frac{T_2 - T_1}{T_2}$	5			
2	(a)	Answer the following questions. (1) Define: Spontaneous process. (2) In an adiabatic process cannot flow into or out of the system.	4			

- - (3) An isobaric process takes place at constant _____.
 - (4) Give the statement of Kelvin-Planck for second law of thermodynamics.

	(b)	Explain: Entropy is thermodynamic probability.	2
	(c)	What is entropy? Explain entropy change in an	3
		irreversible process.	
	(d)	Derive the equation for entropy change in mixture	5
		of ideal gas.	
3	(a)	Answer the following questions.	4
		(1) Give the cell formation of galvanic cell.	
		(2) Give one example of one pair partially miscible	
		liquids.	
		(3) What is binodal curve?	
		(4) Left side of electrochemical cell is known as	
		·	
	(b)	Explain component and degree of freedom.	2
	(c)	Write short note : Calomel electrode.	3
	(d)	Describe the phase diagram of two pair partially	5
		miscible liquid system.	
4	(a)	Answer the following questions:	4
		(1) Define standard half-cell.	
		(2) Write cell reaction of following cell	
		$ m Zn$ / $ m Zn^{+2}$ // $ m Ag+$ / $ m Ag$	
		(3) Define : Phase	
		(4) A mixture of two miscible liquids constitutes a	
		system having the number of phase equal to	
	(b)	Discuss the types of cell.	2
	(c)	Discuss phase rule with its related terms in detail.	3
	(d)	Write note on Galvanic cell.	5
5	(a)	Answer the following questions.	4
		(1) Define : Free energy.	
		(2) Give the Gibbs' Helmholtz equation for change at	
		constant pressure in reference of free energy.	
		(3) What is optical density?	
		(4) Give the mathematical expression of Beer-	
		Lambert's law.	

	(b)	When does a solution deviate from Lambert-Beer's law?	2
	(c)	Derive Gibb's Helmholtz equation.	3
	(d)	Explain spectrophotometic estimation of:	5
		(i) Lacking of absorbance by reaction product and	
		estimating reagent.	
		(ii) Lacking of absorbance by reactants and reagents.	
6	(a)	Answer the following questions.	4
		(1) Define: Work function.	
		(2) What is transmittance.	
		(3) What is the effect of pressure on melting point of ice ?	
		(4) Write Grothus-Draper's law.	
	(b)	Write down Clausius-Clapeyron equation for	2
		solid-liquid equilibria with indicating term with its	
		name.	
	(c)	Derive Beer-Lambert's law.	3
	(d)	Derive Vant-Hoff isotherm equation.	5
7	(a)	Answer the questions.	4
		(1) Define: Equivalent conductance.	
		(2) Unit of conductivity is	
		(3) In metal complex metal show and	
		valency.	
		(4) Define ligand.	
	(b)	Write factors affecting conductance of solutions.	2
	(c)	Write note on murexide indicator.	3
	(d)	Describe precipitation titration by conductometry.	5
8	(a)	Answer the following questions.	4
		(1) Give the structure of disodium salt of EDTA.	
		(2) Define: Metal ion potentiality.	
		(3) Draw the structure of Eriochrome black-T.	
		(4) What is the effect of dilution on specific	
		conductance?	

	(b)	Explain the method for preparation of standard EDTA solution.	2
	(c)	Explain the conductometric titration of weak acid	3
	(d)	and against strong base. Give various method of EDTA titration and explain: (i) Direct titration and (ii) back-titration.	5
9	(a)	Answer the following questions: (1) What is indicator? (2) Give one name of self indicator. (3) Give the molecular formula of sodium thiosulfate. (4) The indicator used for Volhard method in precipitation titration is	4
	(b)	Write the characteristics of primary standard.	2
	(c)	Usefulness of starch indicator in iodimetry and iodometry estimation and its merits and demerits.	3
	(d)	Explain Mohr's method.	5
10	(a)	 Answer the following questions: (1) Which indicator used in Fajan's method for the tiltration of AgNO₃ → NaCl. (2) Normality of 1M Na₂CO₃ solution is N. (3) Define Molarity. (4) Define: Equivalence point 	4
	(b)	Give the difference between end point and equivalent point.	2
	(c)	Explain the principle of Ostwald's law based on indicator.	3
	(d)	Explain the titration curve of strong acid and strong base.	5